Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.
نویسندگان
چکیده
Achieving high quality wine grapes depends on the ability to maintain mild to moderate levels of water stress in the crop during the growing season. This study investigates the use of thermal imaging for monitoring water stress. Experiments were conducted on a wine-grape (Vitis vinifera cv. Merlot) vineyard in northern Israel. Irrigation treatments included mild, moderate, and severe stress. Thermal and visible (RGB) images of the crop were taken on four days at midday with a FLIR thermal imaging system and a digital camera, respectively, both mounted on a truck-crane 15 m above the canopy. Aluminium crosses were used to match visible and thermal images in post-processing and an artificial wet surface was used to estimate the reference wet temperature (T(wet)). Monitored crop parameters included stem water potential (Psi(stem)), leaf conductance (g(L)), and leaf area index (LAI). Meteorological parameters were measured at 2 m height. CWSI was highly correlated with g(L) and moderately correlated with Psi(stem). The CWSI-g(L) relationship was very stable throughout the season, but for that of CWSI-Psi(stem) both intercept and slope varied considerably. The latter presumably reflects the non-direct nature of the physiological relationship between CWSI and Psi(stem). The highest R(2) for the CWSI to g(L) relationship, 0.91 (n=12), was obtained when CWSI was computed using temperatures from the centre of the canopy, T(wet) from the artificial wet surface, and reference dry temperature from air temperature plus 5 degrees C. Using T(wet) calculated from the inverted Penman-Monteith equation and estimated from an artificially wetted part of the canopy also yielded crop water-stress estimates highly correlated with g(L) (R(2)=0.89 and 0.82, respectively), while a crop water-stress index using 'theoretical' reference temperatures computed from climate data showed significant deviations in the late season. Parameter variability and robustness of the different CWSI estimates are discussed. Future research should aim at developing thermal imaging into an irrigation scheduling tool applicable to different crops.
منابع مشابه
Utility of thermal sharpening over Texas high plains irrigated agricultural fields
[1] Irrigated crop production in the Texas high plains (THP) is dependent on water extracted from the Ogallala Aquifer, an area suffering from sever water shortage. Water management in this area is therefore highly important. Thermal satellite imagery at high temporal ( daily) and high spatial ( 100 m) resolutions could provide important surface boundary conditions for vegetation stress and wat...
متن کاملFusion of Hyperspectral and Thermal Images for Evaluating Nitrogen and Water Status in Potato Fields for Variable Rate Application
Potato yield and quality are highly dependent on an adequate supply of nitrogen and water. Opportunities exist to use airborne hyperspectral (HS) remote sensing for the detection of spatial variation in N status of the crop to allow more targeted N applications. Thermal remote sensing has the potential to identify spatial variations in crop water status to allow better irrigation management and...
متن کاملMapping Irrigated Areas Using MODIS 250 Meter Time-Series Data: A Study on Krishna River Basin (India)
Mapping irrigated areas of a river basin is important in terms of assessing water use and food security. This paper describes an innovative remote sensing based vegetation phenological approach to map irrigated areas and then the differentiates the ground water irrigated areas from the surface water irrigated areas in the Krishna river basin (26,575,200 hectares) in India using MODIS 250 meter ...
متن کاملWATER USE EFFICIENCY Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality
Grapevine irrigation is becoming an important practice to guarantee wine quality or even plant survival in regions affected by seasonal drought. Nevertheless, irrigation has to be controlled to optimise source to sink balance and avoid excessive vigour. The results we present here in two grapevine varieties (Moscatel and Castelão) during 3 years, indicate that we can decrease the amount of wate...
متن کاملAutomatic Detection of Regions in Spinach Canopies Responding to Soil Moisture Deficit Using Combined Visible and Thermal Imagery
Thermal imaging has been used in the past for remote detection of regions of canopy showing symptoms of stress, including water deficit stress. Stress indices derived from thermal images have been used as an indicator of canopy water status, but these depend on the choice of reference surfaces and environmental conditions and can be confounded by variations in complex canopy structure. Therefor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 58 4 شماره
صفحات -
تاریخ انتشار 2007